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Abstract. Extended Wigner and extended Weyl functions which are quartic functions of the
wavefunction are introduced and their properties are studied. They provide an insight into the
connection between quantum noise and quantum correlations. The general theory is applied to
the examples of coherent states and thermal states. The construction of the extended Wigner
function from quantum tomography experiments is also discussed and exemplified for the cases of
superposition and also for a mixture of two coherent states.

1. Introduction

Quantum mechanically, a particle is described by its wavefunction in thex-representation
s(x) or by its wavefunction in thep-representatioñs(p). These two functions are related to
each other through a Fourier transform. Quantum phase space methods [1–3] have introduced
functions in thex–p plane for a description of the particle in phase space, which is consistent
with quantum mechanics. The Wigner functionW(x, p), wherex andp are position and
momentum is the most popular one, and methods have been developed recently for its
measurement (Wigner tomography [4]). The Weyl functionW̃ (X, P ) whereX andP are
position and momentumincrementsis also another such function. We have recently studied its
properties in [5] and interpreted it as a generalized correlation function. Its measurement using
electron interferometry has been proposed in [6]. The Wigner function is related to the Weyl
function through a two-dimensional Fourier transform and using this we have introduced, in
[7], an extended phase spacex–p–X–P (position–momentum–position increment–momentum
increment) and proved uncertainty relations forδXδp andδP δx.

In this paper we elaborate this idea further by introducing the extended Wigner function
We(x, p,X, P ) and the extended Weyl functioñWe (x ′, p′,X′, P ′). The quantum phase space
formalism is based heavily on the Fourier transform between thes(x) ands̃(p); and using it
we can prove most of the properties of the Wigner and Weyl functions. The extended phase
space formalism originates from the fact that the Wigner functionW(x, p) and Weyl function
W̃ (X, P ) are related through a two-dimensional Fourier transform and using it we have proved
uncertainty relations for the dual variables(x, P ) and also(p,X). The physical significance
of these uncertainty relations is that they provide a deeper insight into the relation between
quantum noise (described byδx, δp) and quantum correlations (described byδX, δP ). Here
we go one step further, and introduce the extended Wigner and extended Weyl functions in
x−p−X−P and study their properties. These functions simultaneously show both quantum
noise and quantum correlations.
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The Wigner and Weyl functions involve products of the wavefunction at two different
points of phase space:(x − 1

2X,p − 1
2P) and (x + 1

2X,p + 1
2P). Integration overX, P

gives the Wigner function; and integration overx, p gives the Weyl function. They are both
quadratic functions of the wavefunction and, consequently, the superposition of two states
s1(x) + s2(x) gives cross-terms which quantify the interference. The Weyl function shows the
correlations in the system because it involves the integral of the wavefunction with the shifted
(in both position and momentum) wavefunction.

The extended Wigner and extended Weyl functions involve products of the wavefunction
at four different points of phase space. They are bothquartic functions of the wavefunction
and consequently, the superposition of two statess1 + s2 gives cross-terms of the types3

1s2,
s2

1s
2
2 ands1s3

2. Note that cross-terms such ass2
1s

2
2 involve the product of two probabilities and

even exist in the case of mixed states.
In section 2 we define our notation and introduce the Wigner and Weyl functions and

the uncertainty relations forδXδp andδP δx. In section 3 we present the extended Wigner
and extended Weyl functions and study their properties. In section 4 we present examples
which elucidate the physical meaning of the extended Wigner and extended Weyl functions.
In section 5 we discuss the construction of the extended Wigner function from quantum
tomography experiments. We conclude in section 6 with a discussion of our results.

2. Uncertainty relations in an extended phase space

We consider the harmonic oscillator Hilbert spaceH spanned by the number eigenstates
{|N〉;N = 0, 1, 2 . . .}. We also consider the coherent states

|A〉 = exp

(
−|A|

2

2

) ∞∑
N=0

AN

(N !)1/2
|N〉 = D(A)|0〉 (1)

D(A) = exp[Aa†− A∗a] (2)

wherea†, a are the usual creation and annihilation operators. All our quantities are in units in
which h̄ = c = kB = 1. D(A) is the displacement operator which can also be expressed in
terms of the position and momentum operatorsx̂, p̂ as

D(x, p) ≡ D
(
A = x + ip√

2

)
= exp(ipx̂ − ixp̂). (3)

The Wigner function of a state described by a density matrixρ is defined as

W(x, p) = 1

2π

∫
dX〈x + 1

2X|ρ|x − 1
2X〉 exp(−iXp)

= 1

2π

∫
dP 〈p + 1

2P |ρ|p − 1
2P 〉 exp(iPx). (4)

The equivalence between these expressions is known in the literature [1–3].
Another function which is useful in phase space methods is the Weyl function which is

defined as

W̃ (X, P ) =
∫

dx〈x + 1
2X|ρ|x − 1

2X〉 exp(−iPx)

=
∫

dp〈p + 1
2P |ρ|p − 1

2P 〉 exp(ipX) = Tr[ρD(X,P )]. (5)

It is known that these expressions are equal [1–3]. We have shown in [5] that the Weyl
function can be understood as ageneralized correlation function, whereX andP are position
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and momentumincrements. Correlation functions are the overlaps of the shifted wavefunction
s(x + X) with the wavefunctions(x). Here we shift the wavefunction in both position and
momentum and in this sense the Weyl function is a generalized correlation function.

For later purposes we use the expansion

D(X,P ) =
∞∑
N=0

(iP x̂ − iXp̂)N

N !
(6)

to prove that the Weyl function can be expressed as

W̃ (X, P ) =
∑
m,n

(iP)m(−iX)n

m!n!
σmn (7)

whereσmn are the correlations

σmn = Tr[ρ{x̂mp̂n}Weyl ]. (8)

The subscript Weyl indicates symmetrized products of the non-commuting operators.
The Wigner function is related to the Weyl function through the Fourier transform [5, 7]:

W̃ (X, P ) =
∫ ∫

dx dpW(x, p)exp[−i(Px − pX)] (9)

where (x, P ) and (X, p) are dual variables. Note also that [5, 7]

1

2π

∫ ∫
|W̃ (X, P )|2 dX dP = 2π

∫ ∫
[W(x, p)]2 dx dp = Tr[ρ2] 6 1. (10)

Equations (9), (10) show that we can treat the Wigner and Weyl functions as two-
dimensional ‘wavefunctions’, withx, p as ‘positions’ andX, P as ‘momenta’. We stress
that there are several limitations associated with this line of thinking. The operatorsx, p do
not commute; the Wigner function is always real (not complex); and an arbitrary (normalizable)
two-dimensional function is not necessarily a Wigner function (it is a deep problem to find
constraints which a function should obey in order to be a Wigner function [8]). Nevertheless,
relations (9), (10) motivate us to treatW(x, p) andW̃ (X, P ) as dual wavefunctions and to
introduce an extended phase spacex–p–X–P .

In [7] we studied the first steps of such a formalism. We introduced the uncertainties
δX,δP andδx,δp in terms of thesquaresof the Weyl and Wigner functions, correspondingly.
The quantitiesδX, δP provide a measure for the correlations in the quantum stateρ. Indeed, in
[7] we explained that the Weyl function can be interpreted as a generalized correlation function
and we gave several mathematical relations that led to the interpretation that|W̃ (X, P )|2 is
a probability density for the correlation function. Therefore, the widthsδX, δP which are
associated with|W̃ (X, P )|2 quantify the correlations in the quantum stateρ. The quantities
δx, δp describe quantum noise, such as the more conventional uncertainties1x,1p (which are
defined in terms of thefirst power of the Wigner function). We have introduced them because
they play a dual role toδX, δP in the sense that they obey uncertainty relations presented in
[7], and also given below.

For pure states theδx, δp, δX, δP are related to the standard uncertainties1x and1p
[7]:

δx = 2−1/21X δp = 2−1/21P δX = 21/21x δP = 21/21p (11)

but for mixed states they are different. We have shown the existence of the uncertainty relations
among the dual variables:

δXδp > 1
2 Tr[ρ2] δxδP > 1

2 Tr[ρ2] (12)



6952 S Chountasis and A Vourdas

which provide a deeper insight into the connection between quantum noise (as quantified by
δx, δp) and quantum correlations (as quantified byδX, δP ). For pure states these uncertainty
relations reduce to the usual uncertainty relations; but for mixed states they are different.
Uncertainty relations involving the usual uncertainties1x and1p for mixed states, have been
studied in depth in [9]. Our uncertainty relations of equation (12) confirm our ideas about an
extended phase spacex–p–X–P , where the variables (x, P ) and also (p,X) are dual to each
other. In this extended phase space we have ‘wavefunctions’ of two variables (one from each
pair). Above, we have used theW(x, p) and its two-dimensional Fourier transform̃W(X,P ).
However, we can also define theW ′(x,X) andW̃ ′(p, P ) as follows:

W ′(x,X) =
∫

dpW(x, p)exp(ipX)

W̃ ′(p, P ) =
∫

dx W(x, p)exp(−iPx)

W̃ ′(p, P ) = 1

2π

∫ ∫
dx dXW ′(x,X)exp[−i(Px − pX)].

(13)

These ideas lead us naturally to the extended Wigner and extended Weyl functions, which are
discussed below.

3. Extended Wigner and extended Weyl functions

The extended Wigner function is defined as

We(x, p,X, P ) = (2π)2
∫ ∫

dx ′ dp′W(x + 1
2x
′, p + 1

2p
′)W(x − 1

2x
′, p − 1

2p
′)

× exp[i(Xp′ − Px ′)]
=
∫ ∫

dX′ dP ′W̃ ∗(X + 1
2X
′, P + 1

2P
′)W̃ (X − 1

2X
′, P − 1

2P
′)

× exp[i(X′p − P ′x)] (14)

where the subnscript ‘e’ indicates ‘extended’. It is easily seen that the extended Wigner
function is a real function. Using the fact that̃W(X,P ) = W̃ ∗(−X,−P) we prove that
We(x, p,X, P ) = We(x, p,−X,−P).

The extended Weyl function is defined as

W̃e(x
′, p′, X′, P ′) = (2π)2

∫ ∫
dx dpW(x + 1

2x
′, p + 1

2p
′)W(x − 1

2x
′, p − 1

2p
′)

× exp[−i(X′p − P ′x)]
=
∫ ∫

dX dP W̃ ∗(X + 1
2X
′, P + 1

2P
′)W̃ (X − 1

2X
′, P − 1

2P
′)

× exp[i(Xp′ − Px ′)]. (15)

In order to prove the equalities in equations (14), (15) we substitute equation (9) into these
equations, perform the integration and obtain delta functions, which with another integration
give the desired result. Because the Wigner function is always real, no complex conjugate is
required in equations (14), (15).

The extended Weyl function is related to the extended Wigner function through the four-
dimensional Fourier transform

W̃e(x
′, p′, X′, P ′) = 1

4π2

∫
dx dp dX dP We(x, p,X, P )

× exp{−i[(pX′ − xP ′)− (Xp′ − Px ′)]}. (16)
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This is proved if we substituteWe(x, p,X, P ) in the right-hand side of equation (16)
with equation (14). We get delta functions which after integration give the expressions of
equation (15) which arẽWe(x

′, p′, X′, P ′).
Inserting equation (7) into (14), (15) we express the extended Wigner and extended Weyl

functions in terms of the correlationsσmn of equation (8):

We(x, p,X, P ) =
∑
m,n,k,l

We(m, n, k, l; x, p,X, P )σ ∗mnσkl (17)

W̃e(x
′, p′, X′, P ′) =

∑
m,n,k,l

W̃e(m, n, k, l; x ′, p′, X′, P ′)σ ∗mnσkl (18)

where

We(m, n, k, l; x, p,X, P ) =
∫ ∫

dX′ dP ′ (i)m−n−k+l exp[i(X′p − P ′x)]

× (X + 1
2X
′)m

m!

(P + 1
2P
′)n

n!

(X − 1
2X
′)k

k!

(P − 1
2P
′)l

l!
(19)

and

W̃e(m, n, k, l; x ′, p′, X′, P ′) =
∫ ∫

dX dP (i)−m−n+k+l exp[i(Xp′ − Px ′)]

× (X + 1
2X
′)m

m!

(P + 1
2P
′)n

n!

(X − 1
2X
′)k

k!

(P − 1
2P
′)l

l!
. (20)

Note that the Wigner and the Weyl functions are linear functions ofσmn; in contrast to the
extended Wigner and extended Weyl functions which are quadratic functions ofσmn. In
principle, knowledge ofall σmn gives the Weyl function (equation (7)) and the density matrix.
Therefore, quantities such asδx, δp, δX, δP and theWe(x, p,X, P ), W̃e(x

′, p′, X′, P ′) are,in
principle, functions ofσmn. In practice, these quantities contain additional information about
the system, in comparison with theσmn. Firstly, because in practice only the first fewσmn will
be measured; and secondly, because there are difficulties with convergence and it is not always
easy to find explicit expressions that connect directly the various quantities withσmn.

Motivated by the known properties of the Wigner and Weyl functions, we prove analogous
properties for the extended Wigner and extended Weyl functions. First, we prove that

1

4π2

∫ ∫
We(x, p,X, P )dx dp = |W̃ (X, P )|2 (21)

1

16π4

∫ ∫
We(x, p,X, P )dX dP = [W(x, p)]2 (22)

1

8π3

∫ ∫ ∫ ∫
We(x, p,X, P )dx dp dX dP = Tr[ρ2]. (23)

Equation (21) is proved through an inverse Fourier transform of equation (14), which gives

1

4π2

∫ ∫
dx dpWe(x, p,X, P )exp[−i(βx − αp)]

= W̃ (X + 1
2α, P + 1

2β)W̃
∗(X − 1

2α, P − 1
2β). (24)

In the case whereα = β = 0 equation (24) gives equation (21). In a similar way we prove
equation (22). Equation (23) can be proved through integration of either equation (21) or (22),
using equation (10).

Equations (21), (22) in conjuction with equations (17)–(20) from [7] lead to the result

1

8π3

∫ ∫ ∫
We(x, p,X, P )dX dP dp =

∫
|〈x + 1

2x
′|ρ|x − 1

2x
′〉|2dx ′ (25)



6954 S Chountasis and A Vourdas

1

8π3

∫ ∫ ∫
We(x, p,X, P )dX dP dx =

∫
|〈p + 1

2p
′|ρ|p − 1

2p
′〉|2 dp′ (26)

1

8π3

∫ ∫ ∫
We(x, p,X, P )dx dp dX =

∫
|〈p|ρ|p + P 〉|2 dp (27)

1

8π3

∫ ∫ ∫
We(x, p,X, P )dx dp dP =

∫
|〈x|ρ|x +X〉|2 dx (28)

For pure states|s〉 the above equations give

1

8π3

∫ ∫ ∫
We(x, p,X, P )dX dP dp =

∫
|s(x + 1

2x
′)|2|s(x − 1

2x
′)|2 dx ′ (29)

1

8π3

∫ ∫ ∫
We(x, p,X, P )dX dP dx =

∫
|s̃(p + 1

2p
′)|2|s̃(p − 1

2p
′)|2 dp′ (30)

1

8π3

∫ ∫ ∫
We(x, p,X, P )dx dp dX =

∫
|s̃(p)|2|s̃(p + P)|2 dp (31)

1

8π3

∫ ∫ ∫
We(x, p,X, P )dx dp dP =

∫
|s(x)|2|s(x +X)|2 dx (32)

where s(x) ≡ 〈x|s〉 and s̃(p) ≡ 〈p|s〉 are the wavefunctions of the state|s〉 in the x-
andp-representations, correspondingly. Note that convolutions of the probability functions
|s(x)|2 and|s̃(p)|2 appear in equations (29), (30), correspondingly; and correlations of these
probability functions appear in equations (32), (31), correspondingly. The integral of the
extended Wigner function with respect toX,P, p gives the convolution of the probability
distribution|s(x)|2; the integral with respect toX,P, x gives the convolution of the probability
distribution|s̃(p)|2; the integral with respect tox, p,X gives the correlation of the probability
distribution |s̃(p)|2; and the integral with respect tox, p, P gives the correlation of the
probability distribution|s(x)|2. These equations lead to the interpretation of the extended
Wigner function as a pseudo-probability distribution for the convolutions and correlations of
the functions|s(x)|2 and|s̃(p)|2.

We also prove the properties

1

4π2

∫ ∫
W̃e(x

′, p′, X′, P ′) dx ′ dp′ = [W̃ ∗( 1
2X
′, 1

2P
′)]2 (33)

1

16π4

∫ ∫
W̃e(x

′, p′, X′, P ′) dX′ dP ′ = W( 1
2x
′, 1

2p
′)W(− 1

2x
′,− 1

2p
′). (34)

Equation (33) is proved through an inverse Fourier transform of equation (15) which gives

1

4π2

∫ ∫
dx ′ dp′ W̃e(x

′, p′, X′, P ′) exp[−i(αp′ − βx ′)]

= W̃ ∗(α + 1
2X
′, β + 1

2P
′)W̃ (α − 1

2X
′, β − 1

2P
′). (35)

In the case whereα = β = 0, equation (35) gives equation (33). In a similar way we prove
equation (34).

Finally, we prove the following properties that involve squares of the Wigner and Weyl
functions:

1

(2π)2

∫ ∫
W 2
e (x, p,X, P )dx dp

=
∫ ∫
|W̃ (X − 1

2X
′, P − 1

2P
′)|2|W̃ (X + 1

2X
′, P + 1

2P
′)|2 dX′ dP ′ (36)

1

(2π)6

∫ ∫
W 2
e (x, p,X, P )dX dP
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=
∫ ∫

[W(x + 1
2x
′, p + 1

2p
′)]2[W(x − 1

2x
′, p − 1

2p
′)]2 dx ′ dp′ (37)

1

(2π)2

∫ ∫
|W̃e(x

′, p′, X′, P ′)|2 dx ′ dp′

=
∫ ∫
|W̃ (X + 1

2X
′, P + 1

2P
′)|2|W̃ (X − 1

2X
′, P − 1

2P
′)|2 dX dP (38)

1

(2π)6

∫ ∫
|W̃e(x

′, p′, X′, P ′)|2 dX′ dP ′

=
∫ ∫

[W(x + 1
2x
′, p + 1

2p
′)]2[W(x − 1

2x
′, p − 1

2p
′]2 dx dp. (39)

In order to prove these equations we multiply equations (14), (15) with themselves to obtain
delta functions which after integration give the results appearing in the right-hand side.

4. Examples

As a first example we consider the coherent states|A〉 of equation (1) for which the Wigner
and the Weyl functions are

W(A; x, p) = 1

π
exp[−(x −

√
2AR)

2 − (p −
√

2AI )
2] (40)

W̃ (A;X,P ) = exp[− 1
4(X

2 + P 2) + i
√

2(XAI − PAR)] (41)

whereAR, AI are the real and imaginary parts ofA. Using them we find that the extended
Wigner and extended Weyl functions are

We(A; x, p,X, P ) = 8π exp[−2(x −
√

2AR)
2 − 2(p −

√
2AI )

2 − 1
2P

2 − 1
2X

2] (42)

W̃e(A; x ′, p′, X′, P ′) = 2π exp[− 1
2(x
′2 + p′2)− 1

8(X
′2 + P ′2)] exp[i

√
2(ARP

′ − AIX′)].
(43)

The extended Wigner function is a Gaussian located around the point (
√

2AR,
√

2AI , 0, 0).
The last two zeros reflect the fact that the Weyl function of any state is always located around
(X = 0,P = 0) as explained in [5]. The extended Weyl function is also Gaussian and contains
the oscillatory term exp[i

√
2(ARP ′ − AIX′)].

As a second example we consider the thermal density matrix

ρ = (1− e−β)
∞∑
N=0

(e−βN)|N〉〈N | (44)

for which the Wigner and the Weyl functions are

W(x, p) = 1

π
tanh( 1

2β) exp{−[tanh( 1
2β)](x

2 + p2)} (45)

W̃ (X, P ) = exp{− 1
4[coth( 1

2β)](X
2 + P 2)}. (46)

Using them we find that the extended Wigner function is

We(x, p,X, P ) = 8π [tanh( 1
2β)] exp{−2 tanh( 1

2β)(x
2 + p2)− [2 tanh( 1

2β)]
−1(X2 + P 2)}.

(47)

This is a special case of a Gaussian function of four variables. We note that for the ‘squeezed
thermal density matrix’ (which is the thermal density matrix multiplied on both sides with the
squeezing operator) the extended Wigner function will have exponentialxp andXP terms;
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but it will not havexX, xP , pX, pP terms because they are inconsistent with the property
We(x, p,X, P ) = We(x, p,−X,−P) which we proved earlier. The extended Weyl function
for the thermal density matrix is

W̃e(x
′, p′, X′, P ′) = 2π [tanh( 1

2β)] exp{− 1
2 tanh( 1

2β)(x
′2 + p′2)

−[8 tanh( 1
2β)]

−1(X′2 + P ′2)}. (48)

In the limit of β →∞ (zero temperature) the thermal density matrix becomes the pure state
|0〉〈0|. In this case the above result agrees with equations (42), (43) withA = 0.

5. Quantum tomography for extended Wigner functions

The quantum tomography method of reconstructing the Wigner function from optical
homodyne measurements can also give the extended Wigner and extended Weyl functions.
The quantity measured is the Radon transform [10] of the Wigner function along the line
x sinθ − p cosθ = q, defined as

Q(q, θ) =
∫ ∫

W(x, p)δ(x sinθ − p cosθ − q) dx dp

=
∫
W(q sinθ + u cosθ,−q cosθ + u sinθ) du (49)

whereq is a real variable and−π
2 6 θ < π

2 . From theQ(q, θ) we can evaluate the Weyl
function using the Fourier transform

W̃ (X, P ) =
∫
Q

[
q, tan−1

(
P

X

)]
exp[−iq(X2 + P 2)1/2] dq. (50)

This formula can be easily proved by taking the Fourier transform of both sides in equation (49).
Inserting equation (50) into (14) we get

We(x, p,X, P ) =
∫ ∫ ∫ ∫

dX′ dP ′ dq1 dq2Q

[
q1, tan−1

(
P + 1

2P
′

X + 1
2X
′

)]

×Q
[
q2, tan−1

(
P − 1

2P
′

X − 1
2X
′

)]
exp[i(X′p − P ′x)] exp{iq1[(X + 1

2X
′)2

+(P + 1
2P
′)2]1/2} exp{−iq2[(X − 1

2X
′)2 + (P − 1

2P
′)2]1/2}. (51)

A similar expression can be derived for the extended Weyl function in terms ofQ(q, θ).
As an example, we consider the mixed state

ρ = 1
2(|A〉〈A| + |B〉〈B|) (52)

with A = AR + iAI andB = BR + iBI . The Radon transform of the Wigner functionQ(q, θ)
for this state has been calculated using equation (49) and is shown in figure 1.

The Wigner and Weyl functions can be easily expressed in terms of the Wigner and Weyl
functions for coherent states given in equations (40), (41):

W(x, p) = 1
2[W(A; x, p) +W(B; x, p)] (53)

W̃ (X, P ) = 1
2[W̃ (A;X,P ) + W̃ (B;X,P )]. (54)

Using them we calculate the extended Wigner function:

We(x, p,X, P ) = 1
4We(A; x, p,X, P ) + 1

4We(B; x, p,X, P )
+1

2[We(A; x, p,X, P )We(B; x, p,X, P )]1/2 exp[(AR − BR)2
+(AI − BI )2] cos[

√
2X(AI − BI )−

√
2P(AR − BR)]. (55)
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Figure 1. The Radon transformQ(q, θ) of the Wigner function for the mixed state of equation (52)
with A = −B = 2.

It can be seen that it contains two ‘auto terms’We (A; x, p, X, P ) andWe (B; x, p, X, P )
which are simply the extended Wigner functions for the coherent states|A〉 and|B〉, given in
equation (42). The third ‘oscillatory term’ appears in spite of the fact that the state is mixed.
From a mathematical point of view this is related to the quartic nonlinearity of the extended
Wigner function. Physically, it shows that there exists higher-order interference in the mixed
state of equation (52). In figure 2 we plot the extended Wigner function for the mixed state
of equation (52) withA = −B = 2. The results are plotted as a function ofx, p (with
X = P = 0). The two side peaks correspond to the two first auto terms in equation (55).
The middle peak corresponds to the third oscillatory term in equation (55) (although the
oscillations are not seen becauseX, P are fixed to zero). The middle peak quantifieshigher-
order interferencein themixedstate of equation (52). The fact that the state is mixed implies
the absence of interference in the Wigner and Weyl functions which arequadraticfunctions
of the wavefunction. However, interference still persists in quantities which are higher-order
functions of the wavefunction: e.g., in our extended Wigner function which is a quartic function
of the wavefunction. Fourth-order interference involves the product of four amplitudes which
can be the product of two probabilities. Therefore, we get fourth-order interference even with
mixed states.

In a similar way the extended Weyl function for the same state can be expressed as

W̃e(x
′, p′, X′, P ′) = 1

4W̃e(A; x ′, p′, X′, P ′) + 1
4W̃e(B; x ′, p′, X′, P ′)

+1
2[W̃e(A; x ′, p′, X′, P ′)W̃e(B; x ′, p′, X′, P ′)]1/2] exp[−(AR − BR)2
−(AI − BI )2 cosh[

√
2x ′(AR − BR) +

√
2p′(AI − BI )]. (56)

It can be seen that it contains two auto termsW̃e (A; x ′, p′,X′, P ′) andW̃e (B; x ′, p′,X′, P ′),
which are the extended Weyl function for the coherent states|A〉 and|B〉 given in equation (43).
The third term is related to the quartic nonlinearity of the extended Weyl function and indicates
the existence of higher-order correlations in the mixed state of equation (52). In figure 3 we
plot the extended Weyl function for the mixed state of equation (52) withA = −B = 2. The
results are plotted as a function ofx ′, p′ (with X′ = P ′ = 0). The middle peak corresponds
to the first two auto terms in equation (56).
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Figure 2. The extended Wigner function as a function ofx, p (with X = P = 0) for the mixed
state of equation (52) withA = −B = 2. The two side peaks correspond to the first two auto terms
in equation (55). The middle peak corresponds to the third term in equation (55).

Figure 3. The extended Weyl function as a function ofx′, p′ (with X′ = P ′ = 0) for the mixed
state of equation (52) withA = −B = 2. The middle peak corresponds to the first two auto terms
in equation (56). The two side peaks correspond to the third term in equation (56).

The two side peaks correspond to the third term which demonstrates the existence of
higher-order correlationsin the mixed state of equation (52). The fact that the state is
mixed implies the absence of correlation in quantities which arequadratic functions of the
wavefunction. However, correlations still persist in quantities which are higher-order functions
of the wavefunction.

Equations (55), (56) give the extended Wigner and extended Weyl functions for themixed
state of equation (52). If the corresponding pure state

|s〉 = N (|A〉 + |B〉) N = {2 + 2 exp[− 1
2|A− B|2] cos(ARBI − AIBR)}−1/2 (57)

is considered then there are several extra interference terms. Figure 4 shows the Radon
transform of the Wigner functionQ(q, θ) for this state withA = −B = 2 (it has been
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Figure 4. The Radon transformQ(q, θ) of the Wigner function for the pure state of equation (57)
with A = −B = 2.

Figure 5. The extended Wigner function as a function ofx, p (withX = P = 0) for the pure state
of equation (57) withA = −B = 2.

calculated using equation (49)). Figure 5 shows the corresponding extended Wigner function.
The results are plotted as a function ofx, p (with X = P = 0). Comparison of figures 2
and 5 shows that the two side peaks are almost the same (note the different scales in the two
diagrams); and that there is a significant increase in the middle peak in figure 5, due to the
extra interference terms.

6. Discussion

The Wigner function has been studied extensively because it clearly shows quantum
interference phenomena (for a review see [11]). In [5] we have studied the Weyl function
and shown that it demonstrates clearly the correlations in quantum states. Both the Wigner
and Weyl functions are quadratic functions of the wavefunction and are related to each through
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a two-dimensional Fourier transform. In this paper we have introduced the extended Wigner
and extended Weyl functions which are quartic functions of the wavefunction, and show,
simultaneously, both quantum noise (described byδx, δp) and quantum correlations (described
by δX, δP ). Many properties of these functions have been proven.

The extended Wigner and the extended Weyl functions for coherent states, thermal states
and the mixed state of equation (52), have been explicitly calculated. Of particular interest is
the last example which has clearly demonstrated the existence of higher-order interference in
mixed states. This is because fourth-order interference involves the product of four amplitudes
which can be the product of two probabilities and this is non-zero for mixed states. Of course,
it can be the product of the first amplitude times the second amplitude in the third power; and
that is why we get much stronger fourth-order interference with the pure state of equation (57)
(as comparison of figures 2 and 5 shows).

The construction of the extended Wigner function from quantum tomography experiments
has been discussed (equations (49)–(51)). The general method has been applied to the examples
of superposition and also to a mixture of two coherent states. The spirit of the paper is to
motivate further work on ‘extended Wigner tomography’ with the aim of showing explicitly
the deeper connection between quantum noise and quantum correlations.

The extended Wigner functionWe(x, p,X, P ) and the extended Weyl function
W̃e(x

′, p′, X′, P ′) are related through a four-dimensional Fourier transform (equation (16)).
We can, therefore, continue with the same philosophy and introduce an eight-dimensional
phase spacex–p–X–P–x ′–p′–X′–P ′ and corresponding Wigner and Weyl functions. More
generally, we can introduce a 2N -dimensional phase space and corresponding Wigner and
Weyl functions.

We believe that the extended phase space formalism is the appropriate tool for the study
of correlations and noise in quantum phenomena.
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